
NASA Technical Memorandum 106208

o

A Distributed Version of the NASA Engine

Performance Program

Jeffrey T. Cours and Brian P. Curlett

Lewis Research Center

Cleveland, Ohio

V_:_RSI3f', L3F THE NASA

.r-_ffR c _;RMA!'_C__ PR 3GRAM

3ISTRI_UTED

ENGINE

(NASA) 9 p

N96-I1231

Unclas

O3/61 0176679

July 1993

N/ A

Ill

A Distributed Version of the NASA Engine Performance Program

Jeffrey T. Cours and Brian P. Curlett

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

Abstract

Distributed NEPP, a version of the NASA Engine

Performance Program, uses the original NEPP code
but executes it in a distributed computer environ-

ment. Multiple workstations connected by a network

increase the program's speed and, more importantly,

the complexity of the cases it can handle in a rea-
sonable time. Distributed NEPP uses the public do-

main software package, called Parallel Virtual Ma-

ch2ne, allowing it to execute on clusters of machines

containing many different architectures. It includes

the capability to link with other computers, allow-

ing them to process NEPP jobs in parallel. This pa-
per discusses the design issues and granularity consid-
erations that entered into programming Distributed

NEPP and presents the results of timing runs.

1 Introduction

Distributed computing techniques, in which many

computers simultaneously execute parts of a single,

large program, could significantly increase perfor-
mance and decrease computing time for many of the

programs NASA engineers use. A distributed pro-

gram executes in parallel on a collection of normal
workstations connected by a network rather than on

a dedicated parallel computer, meaning that the pro-

gram gets many of the benefits of parallel compu-
tation but the user need not purchase and install a

dedicated parallel machine.
The NASA Engine Performance Program, or

N EPP, is one program that could benefit considerably

from distributed computation [1]. NEPP is a one-

dimensional, steady-state engine performance predic-

tion program. The code is computationally intensive
due to its flexible control schemes, its optimization of

engine parameters and its chemical equilibrium cal-
culation for thermodynamic properties. The code has

a fairly simple overall structure and processes data in

a relatively uniform, predictable manner, making it a

good candidate for parallel conversion.
This paper describes the process and results to

date of converting NEPP to execute in parallel on

a collection of Unix workstations connected by an

Ethernet network. Section 2 provides an introduc-

tion to the problem of parallelizing a program and
the software tools this project used. Sections 3, 4, 5,

and 6 describe Distributed NEPP's organization and

inner workings and mention the specific issues that

arose when converting NEPP to execute in a distrib-
uted environment. Section 7 provides some details

on the provisions Distributed NEPP has that allow
it to interface with other programs; specifically, the

Integrated Propulsion/Airframe Analysis System, or

IPAS [2]. Section 8 mentions some of the limitations
of the current version of Distributed NEPP, while sec-

tion 9 describes the results of the research, including

a speed comparison between Sequential NEPP and
Distributed NEPP. Finally, section 10 presents some

concluding remarks.

2 Machine Architecture and

Granularity Considerations

Different parallel computer systems require different

approaches to parallelizing programs. A parallel com-

puter may have a shared memory, in which all the pro-
cessors can access the same memory, or it may have

a parti_.ioned memory, also known as a distributed

memory, where each processor has its own memory

and the processors communicate by explicitly sending

messages back and forth. Furthermore, the amount of
time it takes to start a _hread of execution, a sequence

of instructions that the computer executes in parallel

with other threads, can vary significantly from one

machine to another.

For many applications, shared memory architec-
tures tend to simplify parallel programming. With

a partitioned memory, the programmer has to di-
vide the data the parallel program will use among the

machines' processors and explicitly move information
from the memory space of one parallel processor to

others that require it. In effect, the programmer must

write larger, more complex programs capable of man-

aging data movement. In contrast, shared memory
schemes allow all the processors to access all the pro-

graminformationwhenevertheyneedit, leadingto
simplerparallelprograms.However,forarchitectural
reasons,sharedmemoryCPUsoftenrunmoreslowly
thantheCPUsinpartitionedmemorymachines,and
therearea numberof openresearchquestionscon-
cerninghowto buildsharedmemoryparallelcom-
puterswith largenumbersofprocessingunits.

The cost in terms of the amount of time it takes to

start and stop threads of execution also has a tremen-

dous impact on the parallel program's design. Sys-

tems that can cheaply start and stop threads tend to

use fine-grain parallelism, in which small portions of

the code, like the bodies of loops, execute in parallel.

Systems in which the cost of starting and stopping

threads is higher tend to use coarse-grain parallelism,
increasing the size of the portions of code that execute

in parallel, often to the point that each thread actu-

ally comprises an entire sequential program in itself,

and the different programs execute in parallel.

Distributed NEPP uses a free, public domain pack-
age called Parallel Virtual Machine, or PVM, to send

messages back and forth I. PVM makes it easy for

programs executing on different Unix computers to

communicate with one-another using the low-level
network protocols that already exist in Unix. It takes

care of translating data from one machine's native for-

mat to another, provides the ability to start processes

remotely, and allows multiple processes on the same
machine to interact.

Anyone can install PVM on a Unix machine: the

installation process does not require root authority.
PVM compiles on a broad variety of different archi-

tectures ranging from workstations to supercomput-

ers. Additionally, some of the distributed queueing
systems should support PVM in the near future.

To the programmer, distributed computing under
PVM looks like using a partitioned-memory machine

with extremely high thread initiation costs. Starting
a new thread costs as much as starting a program in
Unix: it could take as much as half a second. Par-

allel programs that execute under PVM have to use

parallelism that is as coarse-grained as possible and

they have to keep their threads, which are actually

entirely separate programs, alive throughout almost

the full parallel execution to show speed gains over
their sequential counterparts.

The fact that the workstations communicate with

each other over Ethernet tends to increase communi-

cations costs. Ethernet excels at sending long mes-
sages, such as transmitting entire files. Unfortu-

nately, since the underlying software and hardware

focuses on long messages, PVM appears to be rela-

tively inefficient at sending shorter messages in the

10 kilobyte or smaller range. PVM requires about 3

milliseconds to set up the message for transmission

1 For more information on pvm send e-mail to Internet ad-

dress pvm@msr.epm.ornl.gov.

and then a very low cost per byte to send it, so that

the actual cost for a message tends to grow fairly

slowly with the message length. On an Ethernet sys-
tem, then, the program should pay most attention to

minimizing the total number of messages, relegating

the task of reducing message length to lower prior-
ity. However, other networking systems, as well as

future revisions of the PVM software, should make

shorter messages more efficient. Accordingly, Dis-
tributed NEPP tries to minimize both the number of

messages and the message length wherever possible.
The concepts of efficiency and speedup prove use-

ful when discussing the performance of a parallel pro-

gram. Usually, researchers in parallel computing de-
fine the speedup of a parallel program as the execu-

tion time (wall clock time) of the fastest sequential

version of the program divided by the execution time

of the parallel version for the same task. According to

this definition, a speedup of 2 means that the parallel

program can finish the job twice as quickly as its se-

quential counterpart. E_iciency, then, is the speedup
a parallel program achieves divided by the number of

processors it required to achieve that speedup.

Because of the overhead involved in parallel pro-
cessing, few parallel programs achieve 100% effi-

ciency. A theoretical model developed by Gene Am-

dahl provides a good feel for what happens [3]. First
of all, a portion of the execution time of every pro-

gram has to happen sequentially. For example, in

Distributed NEPP's case only one part of the paral-
lel program, the host, reads the input files and writes

information to the output file: none of the other parts
of the program can begin execution until the host has

read at least enough of the input file to send out the

first parallel job. The time a program spends oper-
ating sequentially is called Ts. The remainder of the

program can benefit from parallel execution, so it is

called Tp. Now, if n processors work on the parallel
job, the total execution time will be:

T = T, + (Tp/n)

Where the sequential execution time always remains
constant, but the parallel time varies with the number

of processors.

Notice what happens in the equation above when

n, the number of processors, goes to infinity: the time

approaches the minimum possible time Ts. What this

model claims is that, for a constant problem size, as
the number of processors increases, execution time

will approach a lower bound. Speedup, in turn, ap-
proaches an upper limit. Finally, the model indicates

that as the number of processors increases, efficiency

decreases, which is exactly what tends to happen in
real parallel programs.

Another interesting fact to note about the model

is that an excellent way to increase efficiency is to

increase Tp, the amount of work the program can

2

do in parallel. As the problem size increases, the

parMlel program becomes more useful because it can

process a larger problem faster than a sequential pro-

gram could execute the same job. Not only does a

parallel program speed up current jobs but it allows

engineers to pursue larger, more complicated design
that could not have been previously investigated due

to time constraints.

3 Organization of Distributed

NEPP

The distributed version of NEPP consists of several

programs. One, the host, has the responsibility of as-

signing tasks to the many nodes. The nodes perform
the actual computation. The host and one or more

node programs can execute on the same or different
machines, though a more typical arrangement would
have the host and one node on one machine and one

node on each of the other machines in the cluster.

While PVM allows a wide variety of parallel program

configurations to exist, the host/node configuration
seemed to be the most natural for this application

since, in a cluster without file sharing facilities, only

one part of the parallel program would be likely to
have access to the input files.

The host program reads the normal NEPP namelist

input, organizes the information, and sends it to the
nodes. The nodes, in turn, perform computation and
return the results to the host which writes them to

the output file. Distributed NEPP makes very few

assumptions about the file structure of its environ-
ment. If the host and nodes are executing on a net-

work that uses the Network File System (or some

similar system that allows them to access the same

files) Distributed NEPP will take advantage of that
fact and the nodes will read some of the input data

files themselves. However, if a node cannot access

the file, it automatically requests a copy of the file's
contents from the host and creates a local, temporary

version of the file.

4 Job Allocation and

Dynamic Load Balancing

A typical NEPP job consists of a design point calcula-
tion followed by a sequence of off-design cases. NEPP

will size engine components to satisfy the design con-
straints. Once the program has sized the engine it

executes a series of off-design cases to determine how

the engine will perform under different flight condi-

tions.

NEPP's grouping of its work into design and off-

design cases provides a natural place to split the pro-

gram into parallel execution streams. In Distributed

NEPP, the host sends off-design parameters to the
nodes, and the nodes calculate the off-design cases

in parallel. The host distributes the cases on a first-
come, first-served basis: as soon as a node finishes its

current off-design case, it sends the results back to

the host along with a request for another job to do

at which point the host responds with the next off-

design case. Slower nodes will take longer to finish

their current jobs, so they will not ask for new jobs

as often; as a result, the host gives more work to the
faster nodes, while the slower nodes receive less work

to perform.
Distributed NEPP's nodes can execute at low pri-

ority. In this case, node programs consume only ma-

chine cycles in which the machine would otherwise

be idle; the dynamic load balancing scheme compen-
sates for nodes on busy machines by sending work

to other nodes on idle machines. As a result, Dis-

tributed NEPP tends to use CPU cycles on only idle

machines without slowing down the busy ones.

5 Communications Protocol

Distributed NEPP uses a fairly sophisticated com-

munications protocol. The communications module

tries to keep the messages as short as possible, at the

expense of using complex code where necessary. To
start Distributed NEPP working, the user executes

the host program nepphost, nepphost, in turn,fig-

uresout how many machines are availableinthe cur-

rentcluster,and itstartsthat number ofcopiesofthe

node program neppnode, one copy per machine. Once

allthe node programs have started,nepphost reads

allthe engine design parameters, packs them into a

message, and broadcaststhe message to allthe nodes;

the host then executesthe designpoint locally.Mean-

while,the nodes unpack the designpoint information

and check to see ifthey need a thermodynamic data

file.(NEPP requiresa thermodynamic data filefor

any engine descriptionthat uses the chemical equilib-

rium model.) Ifthey need the thermodynamic data,

they firsttry toopen the fileusinga filename the host

supplied when itsent the design parameters. Any

nodes that cannot open the filesend a message back

to the host requestingthat itsend the contentsofthe

filevia a PVM connection.

As soon as the nodes have allthe informationthey

need,they alsoexecute the NEPP design point.Hav-

ing both the host and the nodes execute the design

pointproved tobe the simplestway to initializemany

of the internalvariableswithin the originalNEPP

code.

Once each node has finishedexecuting the design

point,itsends a message to the host requestingan

off-designcase to execute. The host responds to

the node's requestby packing an off-designcase into

a message and sending it to the requesting node. 6.

To save communications bandwidth, nepphost main-

tains a record of the most recent off-design case each
node has executed, and when it sends the next job it 7.

sends only those parameters that have changed since

the last one. This message compacting scheme re-

duces the size of the messages from potentially tens

of kilobytes down to around 100 to 200 bytes.

When each node finishes executing its off-design

case, it sends the results back to the host along

with a request for a new off-design case to execute. 10.

nepphost continues to distribute off-design cases to

the nodes until it reaches the end of the input file.

Once it runs out of off-design data, the host starts

sending out "die" messages to the nodes, telling them
to clean up their temporary files and shut themselves

down. The host program then closes its files and ex-

its, leaving the nodes to exit at their earliest possible
opportunity.

6 Event-Driven Approach to

Scheduling

Since many of Distributed NEPP's operations take

place simultaneously, nepphost must use a fairly so-
phisticated approach to decide what to do next. The

decision becomes even more complicated because the

results from the nodes will probably come back in an

order different from the one in which nepphost sent
them out. However, Distributed NEPP guarantees

that it will write the results to the output file in the

same order that they appear in the input file; there-
fore, nepphost often has to sort and store results until

it has the next one it needs to write to the output file.

To simplify the program's organization and to

make it easier to modify, nepphost uses an event-

driven paradigm in its design, nepphost divides ev-

erything that can happen into a series of events; it

then spends most of its time executing an event loop.

At each pass through the event loop, nepphost con-
siders what has occurred and, based on a list of pri-

orities, it decides on an event handler to trigger. It

makes its decision based on a list of things to do in

order of priority (from highest to lowest):

1. If a fatal error has occurred, abort this program.

2. If necessary, reset the host and the nodes.

3. If there is no job (i.e. no off-design case) ready
to go to a node, get one ready.

4. If there is a node available to handle a job, send
the job to the node.

5. If a node has sent a message saying it is done

initializing itself, receive the message.

If a node has sent a message saying it has finished

the job it was working on, receive that message.

If a node has requested a copy of the thermody-
namic data file, send the copy.

8. If results are available to write to the outpu t file,
write them.

9. If there is no more work to do, quit.

If there is nothing to do right now, but there are

more off-design cases to execute, enter an idle

state that consumes no CPU cycles and wait for

something to happen.

The event-driven paradigm makes it easy to mod-
ify the priority nepphost assigns to the various situ-

ations; in fact, changing priority levels requires mod-

ifying only a single function. Also, adding event

handlers to handle new situations presents few dif-
ficulties. The interface to the IPAS code demon-

strates how easy this paradigm makes modification:

the IPAS interface uses a different set of event pri-
orities but most of the same event handlers that the

stand-alone program uses.

7 How to Interface

Distributed NEPP With

Other Programs

Other programs such as the IPAS system may need

to use NEPP to perform some of their computations.
Distributed NEPP provides facilities that other codes

can use to execute its NEPP jobs either in parallel or
sequentially.

The Distributed NEPP source code includes two

different interface modules. Linking with the first,
neppint, c, creates a stand-alone version of Distrib-

uted NEPP that reads NEPP input files and gener-

ates output files. The second, ipasint.¢, provides

an interface through which other programs can use
Distributed NEPP's parallel execution facilities.

To use Distributed NEPP, IPAS must first call the

routine setup_epp, setup_uepp and its compliment,
takedotm2aepp, are one-time calls that turn Distrib-

uted NEPP on and off, respectively.

When IPAS wants to process a design case followed
by a series of off-design cases, it calls the subrou-

tine paxnep to start processing in parallel. The code

can also process sequentially, if necessary, by using
seqnep instead. Because of the overheads involved

in parallel processing, for small numbers of off-design

cases it is generally more efficient to execute sequen-
tially rather than in parallel. The critical number

of off-design cases varies tremendously with the com-

plexity of the engine IPAS processes, but a good rule

ofthumbis touseseqnepforfewerthan50off-design
pointsandpaxnep for 50 or more. As far as the IPAS
code is concerned, the two subroutines look and be-

have exactly alike, and either one can do the work of

the other (though perhaps more slowly).
The subroutines seqnep and parnep need a way to

get design and off-design cases from IPAS as they ex-
ecute, and they must be able to return results back to
IPAS. The programmer developing the code that con-
nects to Distributed NEPP is responsible for provid-

ing two subroutines, nexZpt and result. Distributed
NEPP calls nextpt whenever it needs a new design or

off-design case to process. Whenever either paxnep or
seqnep calls nextpt, nextpt either loads the NEPP
common blocks with the next case to process or, if

there are no more points, it returns a code indicating

that fact. Distributed NEPP uses the routine result

to return its results back to IPAS; every time paxnep

or seqnep has the results of a point, it will make sure
those results are in the NEPP common blocks and

then call result to signal IPAS that it can extract the

information. Both paxnep and seqnep guarantee that

they will return results in the same order that nextpt

provides them, since Distributed NEPP stores the re-
sults that come back from the nodes and sorts them

into the proper order before calling result.
This clean interface, involving just 6 subroutines,

should make it easy to add Distributed NEPP to

other programs that need to quickly calculate off-

design engine cycle performance.

8 Limitations of Distributed

NEPP

Since this research project focussed mostly on demon-

strating that executing NEPP in parallel would show

significant improvements over Sequential NEPP, the
current version of Distributed NEPP has some limi-

tations that later projects should address.

First, Distributed NEPP is not yet smart enough

to take advantage of any special features that may

be present on the various nodes. In particular, if a

single node program executes on a parallel process-

ing machine such as a Hypercube, the node will use

only one processor on the machine. This problem
arises because currently there is only one type of node

program, and that one type of program supports the
lowest common denominator in processors, the single-

processor machine. It would be possible in the future
to add new variants of the node program that can take

advantage of additional features present on some of
the more exotic parallel processing machines.

The first-come, first-served load balancing ap-

proach Distributed NEPP now uses leads to some in-

efficiency in the program because it distributes the

jobs to the nodes in a somewhat random fashion.

The NEPP code relies on the results from the pre-

vious off-design case to help it converge quickly to a
solution for the next. In ordinary Sequential NEPP,

the engineer could arrange the input file so that sim-

ilar off-design cases occur one after the other in the
file. Unfortunately, Distributed NEPP's scheduling

algorithm tends to send successive off-design cases to
different nodes, so that the nodes take longer on av-

erage to converge to a solution. Current research is

exploring more sophisticated schedulers that attempt
to keep consecutive jobs on the same node and show
more resistance to the saturation problem section 9

describes.

Finally, Distributed NEPP's current job allocation
scheme assumes that all engine input files consist of

one design case followed by a series of off-design cases.

The program is not yet capable of handling multiple

designs in one file or multi-mode engines (i.e., engines
with more than one design condition).

9 Results

Research shows that it is possible to obtain signifi-

cant increases in speed by executing the NASA En-

gine Performance Program in parallel on a collection
of workstations. Testing was performed on a work-

station cluster consisting of 32 IBM RS/6000 Model

560 computers connected by two Ethernet networks;
one for file sharing and the other for message passing.

Each node of the cluster is rated at 40 DP MFLOPS

has at least 64 MB RAM and local disk for paging.

One IBM RS/6000 Model 970 is used for file serving.

The test input file is for a turbine bypass engine

for a high speed civil transport. The engine cycle is

optimized for net thrust at each off-design case. The

input file contains 300 off-design performance points,
a typical size required for mission analysis. The tests

were run using a simple table-lookup thermodynamic
routine and a more complex chemical equilibrium

thermodynamic model. The more complex model in-
creases the execution time of each off-design case by

approximately 10 times. Timing runs were made us-

ing 1 to 24 processors for both simple and complex

thermodynamic models.

Results show the actual amount of speed gain de-

pends upon the amount of time to execute each off-

design case. Figure 1 shows typical speedup ver-
sus the number of node programs for both the sim-

ple (case 1 - without CEC) and complex (case 2 -
with CEC) thermodynamic calculations. Figure 2
shows the corresponding efficiency (speedup/number

of nodes).
For the simple case, the speedup increases almost

linearly until the number of nodes reaches 7. At this

point the host sat.urates. That is, the host cannot

prepare and send out work fast enough to keep any

20.0

16.0

8.0

4.0

.0

100.

80.

60.

Eflfc_en_ (%)

40.

20.

O.

.0

...... _..... _..... p..... _..... p..... ,_..... ,_..... ,_..... _..... _..... ,L....
I

i I i i I I o a
o I o i I i /

I I , t I i Jr /o o i o !.....,.....,.....,.....,,; .
r r r r- r r r r r r-_--r I

a

I

...................................r...........
i

: /:Case 2- Idth CEC :
, / ,

.......... _ b I- b I- i- b i. b b
I o I A"

I I I I
| o :..i /

........... L L L i.___ -.-I. i. L i. I.
* i i o I

I , 1 i __/ I i i I !

I i n _ a

n i I _ i I
i a a o o i a

i l , I I I i , i
........... L L L.._..L L L L k L /I

i , I 1 i
* , I a/ n o i o

t , _ I i i
' , _ i I i I I

, n i o n n
I /) i i i i

........... , I. ..i i i i o I i ir F _ _ _ -_- _..... _..... _..... _..... r r

, a , o

n i o , , ,
i , i , i i u

: :
i i ,..... " ' _l.

IP --r p p p p p p p r: ,/
_ n n t *

____ : : : : : Case 1 - _4thout CEC J

,..,,,",,,',,,',,,',,,.....!,".....!,,".....i,,".....I
4.0 8.0 12.0 16.0 20.0 24.0

Number of Nodes

Figure 1: Speedup versus number of nodes

, : : : : :

j * , i i t
t I i i ,
I i I ,

I.g/ , i 1 , i i___.L L..... L L__.-m -.. L L L L L
i_', ,' ,'- _---- "'_"', - --', ,'..... ' / i , _ , _Case 2 - with CECt,

-i , j i i i _ ,/l. , / 'll... , ,
---]-m_ r r r r r r r'_-'r_ r

i _T u a I o t a I
/

|i i l i , , I i i _ .d
l i a , o , , a l _-

l a * * i i * ,

n i i , i u m * ; i ,
.... p p p p p p p p p p p

I | * o ; , ,
• o * i I i o

i I , i i I
o a o i , , i ¢ i _ a

, n n i o u i
• i n n n , u
o n a a n o i
u n a n n o ,
n i a i i o , i I o

n i ; n o : n
o o o I I

I I , i * I * i
i , i i I i I i i
a * v o n
o i , n i a o i n i I

..... L I. I._._ L L L L L [. L L .
i i i i , - , i
I , i o i
i i i i n , n
• u n , , o i
, i a i i i n
a n a n , i

.. i n , i I i , q I o
---r r r r r ---r r r r r r

i i i i l , i i
i i i i i i i
a * o u i I ,
o i o i o u u . . . •1- I'_', : : ', : : ,_._. Case wlt utCEC

..... ,...... ,...... ,...... ,...... ,...... ,...... ,...... ;...... ;......
, , n o
a i i l
n , , ,

a o I

o o i

I i i
i t I

i i i

i i i i l i i i i i i
.0 4.0 8.0 12.0 16.0 20.0 24.0

Number of Nodes

Figure 2: Efficiency versus number of nodes

more nodes busy. This saturation point will vary with

changes in network speed as well as processor speed.
Each off-design case for this engine model took ap-

proximately 0.75 seconds to execute.
The results for the complex ease give a better idea

of the performance level Distributed NEPP can at-

tain. Each off-design calculation takes approximately
7 seconds to execute allowing the host ample time to

complete its work while the node programs remain

busy. These results show speedup continuing to in-
crease almost linearly with the number of processors.

On 24 processors a speedup of 18 times was achieved

reducing a 35 minute sequential job to under 2 min-

utes in parallel. The fluctuations in the efficiency

curve (figure 2, case 2) are due to changes in network

and/or cpu loading.
These results indicate that a cluster of relatively

inexpensive workstations can achieve supercomputer

performance, though no actual measure of floating

point performance was made. Furthermore, a dedi-
cated cluster of computers is not necessary to achieve

this level of performance: similar results were found

while running this code on a group of general use
workstations.

they can with only sequential analysis tools: these
new parallel processing techniques will increase the

range, rather than just the speed, of what engineers
can accomplish.

References

[1] Plencner, R.M.; and Snyder, C.A.: The

Navy�NASA Engine Program (NNEP89) -- A
User's Manual. NASA TM-105186, 1991.

[2] Lavelle, T.M.; Plencner, R.M.; and Seidel,
J.A.: Concurrent Optimization of Airframe and

Engine Design Parameters. NASA TM-105908,

1992.

[3] Amdahl, G.M.,Blaauw, G.A.; and Brooks, Jr.,
F.P.: Architecture of the IBM System�360. IBM

Journal of Research and Development, 8, no. 2,

87-101, April 1964.

10 Concluding Remarks

While programs like Sequential NEPP do not cur-

rently take a long time to execute, new programs like

the Integrated Propulsion/Airframe Analysis System
make more extensive use of the NEPP code, execut-

ing it thousands of times in the course of analyzing
and designing an engine and airframe. Each call to

NEPP may require only a short time, but a few thou-
sand consecutive calls could result in programs that

take many hours to execute. Executing in parallel
can decrease this time significantly.

Unfortunately, reworking a program to execute in

a distributed fashion can require a large effort. For

example, converting NEPP to a distributed program

required adding at least 15,000 lines of code. Fur-
thermore, it is not always clear how to divide a pro-

gram so as to make it execute as efficiently as pos-
sible. Finally, the maximum performance gains that
could come from executing a program in parallel can

vary significantly depending on the program and the

approach the programmer takes to parallelizing it.
In conclusion, the authors would like to emphasize

a point that Section 2 of this paper makes: the real

strength of parallel programs lies not only in their

speed gains but also in the fact that they become
more useful as the problem size increases. Programs

like Distributed NEPP, while providing some advan-

tage with the problems Sequential NEPP typically

handles, will really prove their worth by allowing en-

gineers to explore far more complex problems than

Form Approved

REPORT DOCUMENTATION PAGE OMBNo.07_-018S
Pubic _ep.._;_g burden for this co;;_.._ of information is estimate_ to average 1 hour per response, including the time for reviewing instructions, searching existing clara sources,

gathering and maintaimng the clara neede¢l, and completing and reviewing the coJlection of information. Set_ comments regarding this burden estimate or any other aspect of this

collection of information, including SUggestions for reducing this burden, to Washington Headquartm's Services. Directorate for Information Operations and Reports, 1215 Joffm'son

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Recluction Project (0704-0188), Wasrdngton, DC 20503.

1. AGENCY USE ONLY (Leave blank)] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I July 1993 Technical Memorandum

4. /it-E AND SUBTITLE 5. FUNDING NUMBERS

A Distributed Version of the NASA Engine Performance Program

AUTHOR(S)

Jeffrey T. Cours and Brian P. Curlett

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

11. SUPPLEMENTARY NO [_5

WU-505--69-50

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-7918

10. SPONSORING/MONWORING
AGENCY REPORT NUMBER

NASA TM- 106208

Responsible person, Jeffrey T. Cours, (216) 977-7041.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Distributed NEPP, a version of the NASA Engine Performance Program, uses the original NEPP code but executes it in

a distributed computer environment. Multiple workstations connected by a network increase the program's speed and,

more importantly, the complexity of the cases it can handle in a reasonable time. Distributed NEPP uses the public

domain software package, called Parallel Virtual Machine, allowing it to execute on clusters of machines containing

many different architectures. It includes the capability to link with other computers, allowing them to process NEPPjobs

in parallel. This paper discusses the design issues and granularity considerations that entered into programming

Distributed NEPP and presents the results of timing runs.

14. SUBJECT TERMS

Parallel programming; Engine performance; Cycle analysis

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

lS. NUMBER OF PAGES

8
16. PRICE CODE

A02
20. UMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Stcl Z39-18
298-102

